Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
Cell Signal ; 116: 111065, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38281616

RESUMO

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.


Assuntos
Isquemia Miocárdica , Proteínas Proto-Oncogênicas c-akt , Humanos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Hipóxia/metabolismo , Lisina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Mitocondriais/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Fatores de Transcrição/metabolismo
3.
Eur Respir J ; 63(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918852

RESUMO

RATIONALE: Recent data suggest that the localisation of airway epithelial cells in the distal lung in idiopathic pulmonary fibrosis (IPF) may drive pathology. We set out to discover whether chemokines expressed in these ectopic airway epithelial cells may contribute to the pathogenesis of IPF. METHODS: We analysed whole lung and single-cell transcriptomic data obtained from patients with IPF. In addition, we measured chemokine levels in blood, bronchoalveolar lavage (BAL) of IPF patients and air-liquid interface cultures. We employed ex vivo donor and IPF lung fibroblasts and an animal model of pulmonary fibrosis to test the effects of chemokine signalling on fibroblast function. RESULTS: By analysis of whole-lung transcriptomics, protein and BAL, we discovered that CXCL6 (a member of the interleukin-8 family) was increased in patients with IPF. Elevated CXCL6 levels in the BAL of two cohorts of patients with IPF were associated with poor survival (hazard ratio of death or progression 1.89, 95% CI 1.16-3.08; n=179, p=0.01). By immunostaining and single-cell RNA sequencing, CXCL6 was detected in secretory cells. Administration of mCXCL5 (LIX, murine CXCL6 homologue) to mice increased collagen synthesis with and without bleomycin. CXCL6 increased collagen I levels in donor and IPF fibroblasts 4.4-fold and 1.7-fold, respectively. Both silencing of and chemical inhibition of CXCR1/2 blocked the effects of CXCL6 on collagen, while overexpression of CXCR2 increased collagen I levels 4.5-fold in IPF fibroblasts. CONCLUSIONS: CXCL6 is expressed in ectopic airway epithelial cells. Elevated levels of CXCL6 are associated with IPF mortality. CXCL6-driven collagen synthesis represents a functional consequence of ectopic localisation of airway epithelial cells in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Bleomicina , Quimiocina CXCL6/metabolismo , Quimiocinas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia
4.
Rheumatology (Oxford) ; 63(3): 837-845, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310903

RESUMO

OBJECTIVE: Multiple observations indicate a role for lymphocytes in driving autoimmunity in SSc. While T and NK cells have been studied in SSc whole blood and bronchoalveolar lavage fluid, their role remains unclear, partly because no studies have analysed these cell types in SSc-interstitial lung disease (ILD) lung tissue. This research aimed to identify and analyse the lymphoid subpopulations in SSc-ILD lung explants. METHODS: Lymphoid populations from 13 SSc-ILD and 6 healthy control (HC) lung explants were analysed using Seurat following single-cell RNA sequencing. Lymphoid clusters were identified by their differential gene expression. Absolute cell numbers and cell proportions in each cluster were compared between cohorts. Additional analyses were performed using pathway analysis, pseudotime and cell ligand-receptor interactions. RESULTS: Activated CD16+ NK cells, CD8+ tissue resident memory T cells and Treg cells were proportionately higher in SSc-ILD compared with HC lungs. Activated CD16+ NK cells in SSc-ILD showed upregulated granzyme B, IFN-γ and CD226. Amphiregulin, highly upregulated by NK cells, was predicted to interact with epidermal growth factor receptor on several bronchial epithelial cell populations. Shifts in CD8+ T cell populations indicated a transition from resting to effector to tissue resident phenotypes in SSc-ILD. CONCLUSIONS: SSc-ILD lungs show activated lymphoid populations. Activated cytotoxic NK cells suggest they may kill alveolar epithelial cells, while their expression of amphiregulin suggests they may also induce bronchial epithelial cell hyperplasia. CD8+ T cells in SSc-ILD appear to transition from resting to the tissue resident memory phenotype.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Linfócitos T Reguladores , Humanos , Anfirregulina , Linfócitos T CD8-Positivos , Células Matadoras Naturais , Pulmão , Doenças Pulmonares Intersticiais/imunologia , Células T de Memória , Escleroderma Sistêmico/imunologia
5.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961692

RESUMO

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.

6.
J Immunol ; 211(7): 1073-1081, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566492

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fibrotic age-related chronic lung disease characterized by the accumulation of senescent cells. Whether impaired immune response is responsible for the accumulation of senescent cells in the IPF lung remains unknown. In this study, we characterized the NK phenotype in IPF lungs via flow cytometry using 5-dodecanoylaminofluorescein di-ß-d-galactopyranoside, markers of tissue residence, and chemokine receptors. The effect of the lung microenvironment was evaluated using lung fibroblast (LF) conditioned media (CM), and the bleomycin-induced pulmonary fibrosis mouse model was used to assess the in vivo relationship between NK cells and the accumulation of senescent cells. We found that NK cells from the lower lobe of IPF patients exhibited immune-senescent and impaired CD57-NKG2A+ phenotype. We also observed that culture of NK cells from healthy donors in CM from IPF lower lobe lung fibroblasts induced a senescent-like phenotype and impaired cytotoxic capacity. There is an impaired NK recruitment by LF, and NKs presented decreased migration toward their CM. In addition, NK cell-depleted mice treated with bleomycin showed increased collagen deposition and accumulation of different populations of senescent cells compared with controls. The IPF lung microenvironment induces a dysfunctional NK phenotype limiting the clearance of lung senescent cells and the resolution of lung fibrosis. We propose that impaired NK activity could be one of the mechanisms responsible for perpetuating the accumulation of senescent cells in IPF lungs.


Assuntos
Antineoplásicos , Fibrose Pulmonar Idiopática , Camundongos , Animais , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Bleomicina/efeitos adversos , Fibrose , Antineoplásicos/farmacologia , Fibroblastos
7.
Cytometry A ; 103(10): 777-785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449375

RESUMO

An increasing number of translational investigations of lung biology rely on analyzing single cell suspensions obtained from human lungs. To obtain these single cell suspensions, human lungs from biopsies or research-consented organ donors must be subjected to mechanical and enzymatic digestion prior to analysis with either flow cytometry or single cell RNA sequencing. A variety of enzymes have been used to perform tissue digestion, each with potential limitations. To better understand the limitations of each enzymatic digestion protocol and to establish a framework for comparing studies across protocols, we performed five commonly published protocols in parallel from identical samples obtained from 6 human lungs. Following mechanical (gentleMACS™) and enzymatic digestion, we quantified cell count and viability using a Nexcelom Cellometer and determined cell phenotype using multiparameter spectral flow cytometry (Cytek™ Aurora). We found that all protocols were superior in cellular yield and viability when compared to mechanical digestion alone. Protocols high in dispase cleaved immune markers CD4, CD8, CD69, and CD103 and contributed to an increased monocyte to macrophage yield. Similarly, dispase led to a differential epithelial cell yield, with increased TSPN8+ and ITGA6+ epithelial cells and reduced CD66e+ cells. When compared to collagenase D, collagenase P protocols yielded increased AT1 and AT2 cells and decreased endothelial cells. These results provide a framework for selecting an enzymatic digestion protocol best suited to the scientific question and allow for comparison of studies using different protocols.


Assuntos
Colagenases , Células Endoteliais , Humanos , Citometria de Fluxo/métodos , Pulmão , Digestão
8.
Eur Respir J ; 62(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142338

RESUMO

BACKGROUND: In idiopathic pulmonary fibrosis (IPF), myofibroblasts are key effectors of fibrosis and architectural distortion by excessive deposition of extracellular matrix and their acquired contractile capacity. Single-cell RNA-sequencing (scRNA-seq) has precisely defined the IPF myofibroblast transcriptome, but identifying critical transcription factor activity by this approach is imprecise. METHODS: We performed single-nucleus assay for transposase-accessible chromatin sequencing on explanted lungs from patients with IPF (n=3) and donor controls (n=2) and integrated this with a larger scRNA-seq dataset (10 IPF, eight controls) to identify differentially accessible chromatin regions and enriched transcription factor motifs within lung cell populations. We performed RNA-sequencing on pulmonary fibroblasts of bleomycin-injured Twist1-overexpressing COL1A2 Cre-ER mice to examine alterations in fibrosis-relevant pathways following Twist1 overexpression in collagen-producing cells. RESULTS: TWIST1, and other E-box transcription factor motifs, were significantly enriched in open chromatin of IPF myofibroblasts compared to both IPF nonmyogenic (log2 fold change (FC) 8.909, adjusted p-value 1.82×10-35) and control fibroblasts (log2FC 8.975, adjusted p-value 3.72×10-28). TWIST1 expression was selectively upregulated in IPF myofibroblasts (log2FC 3.136, adjusted p-value 1.41×10- 24), with two regions of TWIST1 having significantly increased accessibility in IPF myofibroblasts. Overexpression of Twist1 in COL1A2-expressing fibroblasts of bleomycin-injured mice resulted in increased collagen synthesis and upregulation of genes with enriched chromatin accessibility in IPF myofibroblasts. CONCLUSIONS: Our studies utilising human multiomic single-cell analyses combined with in vivo murine disease models confirm a critical regulatory function for TWIST1 in IPF myofibroblast activity in the fibrotic lung. Understanding the global process of opening TWIST1 and other E-box transcription factor motifs that govern myofibroblast differentiation may identify new therapeutic interventions for fibrotic pulmonary diseases.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Camundongos , Animais , Miofibroblastos/metabolismo , Cromatina , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fibroblastos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Fibrose , Bleomicina , Fatores de Transcrição/genética , RNA/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
9.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749633

RESUMO

Type II alveolar epithelial cell (AECII) redox imbalance contributes to the pathogenesis of idiopathic pulmonary fibrosis (IPF), a deadly disease with limited treatment options. Here, we show that expression of membrane-bound cytochrome B5 reductase 3 (CYB5R3), an enzyme critical for maintaining cellular redox homeostasis and soluble guanylate cyclase (sGC) heme iron redox state, is diminished in IPF AECIIs. Deficiency of CYB5R3 in AECIIs led to sustained activation of the pro-fibrotic factor TGF-ß1 and increased susceptibility to lung fibrosis. We further show that CYB5R3 is a critical regulator of ERK1/2 phosphorylation and the sGC/cGMP/protein kinase G axis that modulates activation of the TGF-ß1 signaling pathway. We demonstrate that sGC agonists (BAY 41-8543 and BAY 54-6544) are effective in reducing the pulmonary fibrotic outcomes of in vivo deficiency of CYB5R3 in AECIIs. Taken together, these results show that CYB5R3 in AECIIs is required to maintain resilience after lung injury and fibrosis and that therapeutic manipulation of the sGC redox state could provide a basis for treating fibrotic conditions in the lung and beyond.


Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática , Humanos , Células Epiteliais Alveolares/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Transdução de Sinais , Citocromo-B(5) Redutase/metabolismo
10.
Thorax ; 78(4): 402-408, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301243

RESUMO

BACKGROUND: Birt-Hogg-Dubé syndrome (BHD) is a clinical syndrome manifesting with cystic lung disease and pneumothorax. Features of BHD result from the loss-of-function mutations of the folliculin (FLCN) gene. Chronic obstructive pulmonary disease (COPD), characterised by an irreversible airflow limitation, is primarily caused by cigarette smoking. OBJECTIVE: Given that COPD often shares structural features with BHD, we investigated the link between COPD, cigarette smoke (CS) exposure and FLCN expression. METHODS: We measured the expression of FLCN in human COPD lungs and CS-exposed mouse lungs, as well as in CS extract (CSE)-exposed immortalised human airway epithelial cells by immunoblotting. RESULTS: We found that the lung FLCN protein levels in smokers with COPD and CS exposure mice exhibit a marked decrease compared with smokers without COPD and room air exposure mice, respectively. We confirmed CS induced degradation of FLCN in immortalised human bronchial epithelial Beas-2B cells via ubiquitin proteasome system. Further, siRNA targeting FLCN enhanced CSE-induced cytotoxicity. By contrast, FLCN overexpression protected cells from CSE-induced cytotoxicity. We found that FBXO23, the ubiquitin E3 ligase subunit, specifically binds to and targets FLCN for degradation. Inhibition of ATM (ataxia-telangiectasia mutated) attenuated CSE induced FLCN degradation, suggesting a role of ATM in FLCN proteolysis. We further confirmed that the mutant of major FLCN phosphorylation site serine 62A is resistant to CSE-induced degradation and cytotoxicity. CONCLUSIONS: Our study demonstrates that CS exposure is a secondary cause of FLCN deficiency due to the enhanced proteolysis, which promoted airway epithelial cell death.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Fumar Cigarros/efeitos adversos , Pulmão/química , Pulmão/metabolismo , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinas/metabolismo
11.
Res Sq ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38196613

RESUMO

Human diseases are characterized by intricate cellular dynamics. Single-cell sequencing provides critical insights, yet a persistent gap remains in computational tools for detailed disease progression analysis and targeted in-silico drug interventions. Here, we introduce UNAGI, a deep generative neural network tailored to analyze time-series single-cell transcriptomic data. This tool captures the complex cellular dynamics underlying disease progression, enhancing drug perturbation modeling and discovery. When applied to a dataset from patients with Idiopathic Pulmonary Fibrosis (IPF), UNAGI learns disease-informed cell embeddings that sharpen our understanding of disease progression, leading to the identification of potential therapeutic drug candidates. Validation via proteomics reveals the accuracy of UNAGI's cellular dynamics analyses, and the use of the Fibrotic Cocktail treated human Precision-cut Lung Slices confirms UNAGI's predictions that Nifedipine, an antihypertensive drug, may have antifibrotic effects on human tissues. UNAGI's versatility extends to other diseases, including a COVID dataset, demonstrating adaptability and confirming its broader applicability in decoding complex cellular dynamics beyond IPF, amplifying its utility in the quest for therapeutic solutions across diverse pathological landscapes.

12.
Clin Cancer Res ; 28(22): 4968-4982, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36074145

RESUMO

PURPOSE: Ewing sarcoma and osteosarcoma are primary bone sarcomas occurring most commonly in adolescents. Metastatic and relapsed disease are associated with dismal prognosis. Although effective for some soft tissue sarcomas, current immunotherapeutic approaches for the treatment of bone sarcomas have been largely ineffective, necessitating a deeper understanding of bone sarcoma immunobiology. EXPERIMENTAL DESIGN: Multiplex immunofluorescence analysis of immune infiltration in relapsed versus primary disease was conducted. To better understand immune states and drivers of immune infiltration, especially during disease progression, we performed single-cell RNA sequencing (scRNAseq) of immune populations from paired blood and bone sarcoma tumor samples. RESULTS: Our multiplex immunofluorescence analysis revealed increased immune infiltration in relapsed versus primary disease in both Ewing sarcoma and osteosarcoma. scRNAseq analyses revealed terminally exhausted CD8+ T cells expressing co-inhibitory receptors in osteosarcoma and an effector T-cell subpopulation in Ewing sarcoma. In addition, distinct subsets of CD14+CD16+ macrophages were present in Ewing sarcoma and osteosarcoma. To determine pathways driving tumor immune infiltration, we conducted intercellular communication analyses and uncovered shared mechanisms of immune infiltration driven by CD14+CD16+ macrophages and unique pathways of immune infiltration driven by CXCL10 and CXCL12 in osteosarcoma. CONCLUSIONS: Our study provides preclinical rationale for future investigation of specific immunotherapeutic targets upon relapse and provides an invaluable resource of immunologic data from bone sarcomas.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma de Ewing , Sarcoma , Adolescente , Humanos , Sarcoma de Ewing/patologia , Recidiva Local de Neoplasia , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/patologia , Comunicação Celular
13.
J Immunol ; 209(9): 1788-1795, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113884

RESUMO

Chronic lung allograft dysfunction is the major barrier to long-term survival in lung transplant recipients. Evidence supports type 1 alloimmunity as the predominant response in acute/chronic lung rejection, but the immunoregulatory mechanisms remain incompletely understood. We studied the combinatorial F-box E3 ligase system: F-box protein 3 (FBXO3; proinflammatory) and F-box and leucine-rich repeat protein 2 (FBXL2; anti-inflammatory and regulates TNFR-associated factor [TRAF] protein). Using the mouse orthotopic lung transplant model, we evaluated allografts from BALB/c → C57BL/6 (acute rejection; day 10) and found significant induction of FBXO3 and diminished FBXL2 protein along with elevated T-bet, IFN-γ, and TRAF proteins 1-5 compared with isografts. In the acute model, treatment with costimulation blockade (MR1/CTLA4-Ig) resulted in attenuated FBXO3, preserved FBXL2, and substantially reduced T-bet, IFN-γ, and TRAFs 1-5, consistent with a key role for type 1 alloimmunity. Immunohistochemistry revealed significant changes in the FBXO3/FBXL2 balance in airway epithelia and infiltrating mononuclear cells during rejection compared with isografts or costimulation blockade-treated allografts. In the chronic lung rejection model, DBA/2J/C57BL/6F1 > DBA/2J (day 28), we observed persistently elevated FBXO3/FBXL2 balance and T-bet/IFN-γ protein and similar findings from lung transplant recipient lungs with chronic lung allograft dysfunction versus controls. We hypothesized that FBXL2 regulated T-bet and found FBXL2 was sufficient to polyubiquitinate T-bet and coimmunoprecipitated with T-bet on pulldown experiments and vice versa in Jurkat cells. Transfection with FBXL2 diminished T-bet protein in a dose-dependent manner in mouse lung epithelial cells. In testing type 1 cytokines, TNF-α was found to negatively regulate FBXL2 protein and mRNA levels. Together, our findings show the combinatorial E3 ligase FBXO3/FBXL2 system plays a role in the regulation of T-bet through FBXL2, with negative cross-regulation of TNF-α on FBXL2 during lung allograft rejection.


Assuntos
Proteínas F-Box , Animais , Camundongos , Abatacepte , Aloenxertos , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Rejeição de Enxerto , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , RNA Mensageiro , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L484-L494, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997276

RESUMO

Accumulation of excessive extracellular matrix (ECM) components from lung fibroblasts is a feature of systemic sclerosis-associated interstitial lung disease (SSc-ILD), and there is increasing evidence that innate immune signaling pathways contribute to these processes. Toll-like receptors (TLRs) are innate immune sensors activated by danger signals derived from pathogens or host molecular patterns. Several damage-associated molecular pattern (DAMP) molecules are elevated in SSc-ILD plasma, including ligands that activate TLR9, an innate immune sensor recently implicated in driving profibrotic responses in fibroblasts. Fibronectin and the isoform fibronectin-extra domain A (FN-EDA) are prominent in pathological extracellular matrix accumulation, but mechanisms promoting FN-EDA accumulation are only partially understood. Here, we show that TLR9 activation increases FN-EDA accumulation in MRC5 and SSc-ILD fibroblasts, but that this effect is independent of changes in FN-EDA gene transcription. Rather, we describe a novel mechanism where TLR9 activation inhibits FN-EDA turnover via reduced FN-EDA ubiquitination. TLR9 ligand ODN2006 reduces ubiquitinated FN-EDA destined for lysosomal degradation, an effect abrogated with TLR9 knockdown or inhibition. Taken together, these results provide rationale for disrupting the TLR9 signaling axis or FN-EDA degradation pathways to reduce FN-EDA accumulation in SSc-ILD fibroblasts. More broadly, enhancing intracellular degradation of ECM components through TLR9 inhibition or enhanced ECM turnover could be a novel strategy to attenuate pathogenic ECM accumulation in SSc-ILD.


Assuntos
Fibronectinas , Doenças Pulmonares Intersticiais , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Ligantes , Doenças Pulmonares Intersticiais/metabolismo , Isoformas de Proteínas/metabolismo , Receptor Toll-Like 9/genética , Ubiquitinação
15.
Arthritis Rheumatol ; 74(12): 2003-2014, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849803

RESUMO

OBJECTIVE: Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc with unclear pathogenesis and limited treatment options. Evidence strongly supports an important role for profibrotic secreted phosphoprotein 1 (SPP1)-expressing macrophages in SSc-ILD. This study was undertaken to define the transcriptome and chromatin structural changes of SPP1 SSc-ILD macrophages in order to better understand their role in promoting fibrosis and to identify transcription factors associated with open chromatin driving their altered phenotype. METHODS: We performed single-cell RNA sequencing (scRNA-Seq) on 11 explanted SSc-ILD and healthy control lung samples, as well as single-cell assay for transposase-accessible chromatin sequencing on 5 lung samples to define altered chromatin accessibility of SPP1 macrophages. We predicted transcription factors regulating SPP1 macrophages using single-cell regulatory network inference and clustering (SCENIC) and determined transcription factor binding sites associated with global alterations in SPP1 chromatin accessibility using Signac/Seurat. RESULTS: We identified distinct macrophage subpopulations using scRNA-Seq analysis in healthy and SSc-ILD lungs and assessed gene expression changes during the change of healthy control macrophages into SPP1 macrophages. Analysis of open chromatin validated SCENIC predictions, indicating that microphthalmia-associated transcription factor, transcription factor EB, activating transcription factor 6, sterol regulatory element binding transcription factor 1, basic helix-loop-helix family member E40, Kruppel-like factor 6, ETS variant transcription factor 5, and/or members of the activator protein 1 family of transcription factors regulate SPP1 macrophage differentiation. CONCLUSION: Our findings shed light on the underlying changes in chromatin structure and transcription factor regulation of profibrotic SPP1 macrophages in SSc-ILD. Similar alterations in SPP1 macrophages may underpin fibrosis in other organs involved in SSc and point to novel targets for the treatment of SSc-ILD, specifically targeting profibrotic macrophages.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/patologia , Epigênese Genética , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Macrófagos/metabolismo , Pulmão/patologia , Fibrose , Fatores de Transcrição/genética , Cromatina
16.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732465

RESUMO

Pulmonary hypertension (PH) is a vascular disease characterized by elevated pulmonary arterial pressure, leading to right ventricular failure and death. Pathogenic features of PH include endothelial apoptosis and vascular inflammation, which drive vascular remodeling and increased pulmonary arterial pressure. Re-analysis of the whole transcriptome sequencing comparing human pulmonary arterial endothelial cells (PAECs) isolated from PH and control patients identified AREG, which encodes Amphiregulin, as a key endothelial survival factor. PAECs from PH patients and mice exhibited down-regulation of AREG and its receptor epidermal growth factor receptor (EGFR). Moreover, the deficiency of AREG and EGFR in ECs in vivo and in vitro heightened inflammatory leukocyte recruitment, cytokine production, and endothelial apoptosis, as well as diminished angiogenesis. Correspondingly, hypoxic mice lacking Egfr in ECs (cdh5 cre/+ Egfr fl/fl) displayed elevated RVSP and pulmonary remodeling. Computational analysis identified NCOA6, PHB2, and RRP1B as putative genes regulating AREG in endothelial cells. The master transcription factor of hypoxia HIF-1⍺ binds to the promoter regions of these genes and up-regulates their expression in hypoxia. Silencing of these genes in cultured PAECs decreased inflammation and apoptosis, and increased angiogenesis in hypoxic conditions. Our pathway analysis and gene silencing experiments revealed that BCL2-associated agonist of cell death (BAD) is a downstream mediator of AREG BAD silencing in ECs lacking AREG mitigated inflammation and apoptosis, and suppressed tube formation. In conclusion, loss of Amphiregulin and its receptor EGFR in PH is a crucial step in the pathogenesis of PH, promoting pulmonary endothelial cell death, influx of inflammatory myeloid cells, and vascular remodeling.


Assuntos
Anfirregulina , Hipertensão Pulmonar , Anfirregulina/genética , Anfirregulina/metabolismo , Animais , Apoptose/genética , Células Endoteliais/metabolismo , Receptores ErbB/genética , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/genética , Hipóxia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos , Remodelação Vascular
17.
Am J Respir Crit Care Med ; 205(12): 1403-1418, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35348444

RESUMO

Rationale: Lymphopenia is common in severe coronavirus disease (COVID-19), yet the immune mechanisms are poorly understood. As inflammatory cytokines are increased in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we hypothesized a role in contributing to reduced T-cell numbers. Objectives: We sought to characterize the functional SARS-CoV-2 T-cell responses in patients with severe versus recovered, mild COVID-19 to determine whether differences were detectable. Methods: Using flow cytometry and single-cell RNA sequence analyses, we assessed SARS-CoV-2-specific responses in our cohort. Measurements and Main Results: In 148 patients with severe COVID-19, we found lymphopenia was associated with worse survival. CD4+ lymphopenia predominated, with lower CD4+/CD8+ ratios in severe COVID-19 compared with patients with mild disease (P < 0.0001). In severe disease, immunodominant CD4+ T-cell responses to Spike-1 (S1) produced increased in vitro TNF-α (tumor necrosis factor-α) but demonstrated impaired S1-specific proliferation and increased susceptibility to activation-induced cell death after antigen exposure. CD4+TNF-α+ T-cell responses inversely correlated with absolute CD4+ counts from patients with severe COVID-19 (n = 76; R = -0.797; P < 0.0001). In vitro TNF-α blockade, including infliximab or anti-TNF receptor 1 antibodies, strikingly rescued S1-specific CD4+ T-cell proliferation and abrogated S1-specific activation-induced cell death in peripheral blood mononuclear cells from patients with severe COVID-19 (P < 0.001). Single-cell RNA sequencing demonstrated marked downregulation of type-1 cytokines and NFκB signaling in S1-stimulated CD4+ cells with infliximab treatment. We also evaluated BAL and lung explant CD4+ T cells recovered from patients with severe COVID-19 and observed that lung T cells produced higher TNF-α compared with peripheral blood mononuclear cells. Conclusions: Together, our findings show CD4+ dysfunction in severe COVID-19 is TNF-α/TNF receptor 1-dependent through immune mechanisms that may contribute to lymphopenia. TNF-α blockade may be beneficial in severe COVID-19.


Assuntos
COVID-19 , Linfopenia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Citocinas , Humanos , Infliximab , Leucócitos Mononucleares , Receptores do Fator de Necrose Tumoral , SARS-CoV-2 , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
18.
Am J Physiol Heart Circ Physiol ; 322(5): H762-H768, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245133

RESUMO

Reversible lysine acetylation regulates the activity of cardiac metabolic enzymes, including those controlling fuel substrate metabolism. Mitochondrial-targeted GCN5L1 and SIRT3 have been shown to regulate the acetylation status of mitochondrial enzymes, but the role that lysine acetylation plays in driving metabolic differences between male and female hearts is not currently known. In this study, we describe a significant difference in GCN5L1 levels between male and female mouse hearts, and in the hearts of women between post- and premenopausal age. We further find that estrogen drives GCN5L1 expression in a cardiac cell line and uses pharmacological approaches to determine the mechanism to be G protein-coupled estrogen receptor (GPER) activation, via translational regulation.NEW & NOTEWORTHY We demonstrate here for the first time that mitochondrial protein acetylation is increased in female hearts, associated with an increase in GCN5L1 levels through a GPER-dependent mechanism. These findings reveal a new potential mediator of divergent cardiac mitochondrial function between men and women.


Assuntos
Proteínas do Tecido Nervoso , Sirtuína 3 , Acetilação , Animais , Estrogênios , Feminino , Coração/fisiologia , Humanos , Masculino , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
19.
Biochem J ; 479(3): 401-424, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147166

RESUMO

The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the 'RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a 'RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the 'RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function.


Assuntos
Cardiomegalia/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas B-raf/fisiologia , Animais , Carbamatos/farmacologia , Carbamatos/toxicidade , Cardiomegalia/metabolismo , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Dimerização , Técnicas de Introdução de Genes , Insuficiência Cardíaca/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Mutação Puntual , Conformação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/biossíntese , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Sulfonamidas/toxicidade
20.
Antioxidants (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36670936

RESUMO

Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12's (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...